Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A major challenge in mantle geochemistry is determining the source composition and melt fraction involved in melting. We provide a new Rare‐Earth Element (REE) inverse model that provides source concentration, source and melt mineral modes, and melt fraction based on the difference between separate determinations of bulk distribution coefficients and constrained by boundary conditions. An analytical inverse of the batch melting equation provides expressions for source, , and bulk distribution coefficient of the mantle, , with two unknowns, the initial concentration of La in the mantle, , andPi, the bulk distribution coefficient of the melt. We traverse through a range of steps and examine thousands of melt modes,Pi, at each step. Thousands of trial melt modes fail by generating that are inconsistent with partition coefficients. Many surviving trials cannot be inverted to estimate a mantle mode. Other boundary conditions eliminate even more trials. Surviving trials are ordered by the difference between calculated from the REE data of a lava suite and calculated from partition coefficients and mantle mode. We select the solution with the closest fit that passes all the boundary conditions. We tested our new model with lava suites from Hawaii where different lines of evidence suggest that they melted from different mantle sources, Mauna Kea representing shield‐stage lava and submarine Kiekie representing rejuvenated stage lava. Our inverse determination of mantle composition and melting parameters was consistent with earlier models based on assumptions of HREE composition.more » « less
-
null (Ed.)Central America has a rich mix of conditions that allow comparisons of different natural experiments in the generation of arc magmas within the relatively short length of the margin. The shape of the volcanic front and this margin's architecture derive from the assemblage of exotic continental and oceanic crustal slivers, and later modification by volcanism and tectonic activity. Active tectonics of the Cocos-Caribbean plate boundary are strongly influenced by oblique subduction, resulting in a narrow volcanic front segmented by right steps occurring at ?150-km intervals. The largest volcanic centers are located where depths to the slab are ?90?110 km. Volcanoes that develop above deeper sections of the subducting slab are less voluminous and better record source geochemical heterogeneity. Extreme variations in isotopic and trace element ratios are derived from different components of thesubducted oceanic lithosphere. However, the extent that volcanoes sample these signatures is also influenced by lithospheric structures that control the arc segmentation. ?? The architecture of Central America derives from the assemblage of exotic continental and oceanic crustal slivers modified by arc magmatism and tectonic processes. ?? Active tectonics in Central America are controlled by oblique subduction. ?? The lithospheric architecture and tectonics define the segmentation of the volcanic front, and thus the depth to the slab below a volcanic center. ?? The composition of the subducted material is the main control of the along arc geochemical variations observed in Central American volcanoes. ?? Geochemical heterogeneity in each segment is highlighted by extreme compositions representing the smaller centers with variations up to 65% of the total observed range.more » « less
-
Abstract The 2021 La Palma eruption (Tajogaite) was unprecedented in magnitude, duration, and degree of monitoring compared to historical volcanism on La Palma. Here, we provide data on melt inclusions in samples from the beginning and end of the eruption to compare the utility of both melt and fluid inclusions as recorders of magma storage. We also investigated compositional heterogeneities within the magmatic plumbing system. We found two populations of olivine crystals: a low Mg# (78–82) population present at the beginning and end of eruption, recording the maximum volatile contents (2.5 wt % H2O, 1,800 ppm F, 700 ppm Cl, 3,800 ppm S) and a higher Mg# (83–86) population sampled toward the end of the eruption, with lower volatile contents. Despite their host composition, melt inclusions share the same maximum range of CO2concentrations (1.2–1.4 wt %), indicating olivine growth and inclusion capture at similar depths. Overall, both melt and fluid inclusions record similar pressures (450–850 MPa, ∼15–30 km), and when hosted in the same olivine crystal pressures are indistinguishable within error. At these mantle pressures, CO2is expected to be an exsolved phase explaining the similar range of CO2between the two samples, but other volatile species (F, Cl, S) behave incompatibly, and thus, the increase between the two olivine populations can be explained by fractional crystallization prior to eruption. Finally, based on our new data, we provide estimates on the total volatile emission of the eruption.more » « less
An official website of the United States government

Full Text Available